

Math 451: Introduction to General Topology

Lecture 10

Difference form of triangle inequality. Let (X, d) (pseudo) metric space. Then for all x, y, z ,

$$|d(x, y) - d(z, y)| \leq d(x, z).$$

Proof. This is equivalent to $-d(x, z) \leq d(x, y) - d(z, y) \leq d(x, z)$ and both inequalities are just Δ -inequality: $d(x, y) - d(z, y) \leq d(x, z) \Leftrightarrow d(x, y) \leq d(x, z) + d(z, y); -d(x, z) \leq d(x, y) - d(z, y) \Leftrightarrow d(z, y) \leq d(z, x) + d(x, y)$. \square

Theorem (Kaplanski). Every metric space (X, d) isometrically injects into $B(X, \mathbb{R})$. Thus, the closure of the image of X in $B(X, \mathbb{R})$ is a completion of X .

Proof. First consider, for each $x \in X$, the function $d_x: X \rightarrow \mathbb{R}$ by $d_x(y) := d(x, y)$.

Clearly, for any $x, z \in X$,

$$d_u(d_x, d_z) = d(x, z)$$

because of the triangle inequality (the difference form above)

$$|d(x, y) - d(z, y)| \leq d(x, z) \text{ and the equality is achieved at } y = z$$

and $y = x$. Thus, $x \mapsto d_x$ is an isometry wrt d_u on the right, but the d_x are not bounded in general, so the codomain isn't $B(X, \mathbb{R})$. b for Busemann

To get bounded functions extend, we fix a point $x_0 \in X$ (think of it as a root of 0), and for each $x \in X$, define $b_x: X \rightarrow \mathbb{R}$ by $b_x := d_x - d_{x_0}$. Note that for any $y \in X$,

$$|b_x(y)| = |d_x(y) - d_{x_0}(y)| = |d(x, y) - d(x_0, y)| \stackrel{\Delta}{\leq} d(x, x_0), \text{ so } |b_x| \leq d(x, x_0), \text{ i.e. } b_x \text{ is bounded.}$$

And still, $x \mapsto b_x$ is an isometry:

$$\begin{aligned} d_u(b_x, b_z) &= \sup_{y \in X} |b_x(y) - b_z(y)| = \sup_{y \in X} |d(x, y) - d(x_0, y) - d(z, y) + d(x_0, y)| = \\ &= \sup_{y \in X} |d_x(y) - d_z(y)| = d_u(d_x, d_z) = d(x, z). \end{aligned}$$

Thus, $x \mapsto b_x$ is an isometry $X \rightarrow B(X, \mathbb{R})$. Hence the closure $\{b_x: x \in X\}$ is a completion of (X, d) . \square (QED)

Continuity.

First we recall/define continuity for functions between metric spaces.

Def. For metric spaces (X, d_X) , (Y, d_Y) , and $x_0 \in X$, a function $f: X \rightarrow Y$ is said to be continuous at x_0 if $\forall \varepsilon > 0 \exists \delta > 0$ such that for all $x \in X$, whenever $d_X(x_0, x) < \delta$, we have $d_Y(f(x_0), f(x)) < \varepsilon$. This is the same as $f(B_\delta(x_0)) \subseteq B_\varepsilon(f(x_0))$; equivalently, $B_\delta(x_0) \subseteq f^{-1}(B_\varepsilon(f(x_0)))$.

We rephrase this without mentioning ε, δ :

Prop. For metric spaces (X, d_X) , (Y, d_Y) , $x_0 \in X$, and a function $f: X \rightarrow Y$, TFAE:

(1) f is continuous at x_0 , i.e. $\forall \varepsilon > 0 \exists \delta > 0$ s.t. $B_\delta(x_0) \subseteq f^{-1}(B_\varepsilon(f(x_0)))$.

(1') for every open ball $B \subseteq Y$ centered at $f(x_0)$, $f^{-1}(B)$ contains an open ball centered at x_0 .

(2) for every open set $V \ni f(x_0)$, $f^{-1}(V)$ contains an open set $U \ni x_0$,

$f^{-1}(V)$ is a neighbourhood of x_0 .

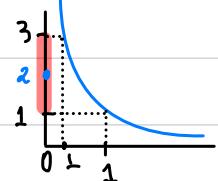
(2') the f -preimage of an open neighbourhood of $f(x_0)$ is a neighbourhood of x_0 .

Proof. We only need to prove $(1') \Leftrightarrow (2)$ since the others are rephrasings.

$(1') \Rightarrow (2)$. Let $V \ni f(x_0)$ be open. Then $\exists \varepsilon > 0$ s.t. $B_\varepsilon(f(x_0)) \subseteq V$. By (1'), $\exists \delta > 0$ such that $B_\delta(x_0) \subseteq f^{-1}(B_\varepsilon(f(x_0))) \subseteq f^{-1}(V)$.

$(2) \Rightarrow (1')$. Let $B := B_\varepsilon(f(x_0))$. By (2), $f^{-1}(B) \ni U \ni x_0$ where U is some open set. Thus $\exists \delta > 0$ s.t. $B_\delta(x_0) \subseteq U \subseteq f^{-1}(B_\varepsilon(f(x_0)))$. □

Caution. In (2'), $f^{-1}(V)$ may not be open in general, even if V is open because of discontinuities at other points. For example, take $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) := \begin{cases} \frac{1}{x} & \text{if } x \neq 0 \\ 2 & \text{if } x = 0 \end{cases}$. Then $f^{-1}((1, 3)) = \{0\} \cup (\frac{1}{3}, 1)$, which is not open.



Def. Let X, Y be metric spaces. A function $f: X \rightarrow Y$ is said to be continuous if it is continuous

at every $x_0 \in X$.

Prop. For metric spaces X, Y , a function $f: X \rightarrow Y$ is continuous if and only if f -preimages of open sets are open, $f^{-1}(\text{open}) = \text{open}$.

Proof. \Leftarrow . Immediate from (2) above.

\Rightarrow . Let $V \subseteq Y$ be open. To show that $f^{-1}(V)$ is open, we fix $x_0 \in f^{-1}(V)$ and show that some ball centered at x_0 is $\subseteq f^{-1}(V)$. But this is true by (2) since \exists open $x_0 \in U \subseteq f^{-1}(V)$, hence \exists open ball B centered at x_0 with $B \subseteq U \subseteq f^{-1}(V)$. Thus, $f^{-1}(V)$ is open. \square

Remark. Topology is defined by open sets, so continuous functions are the **homomorphism** between the topologies.

Example of continuous bijection with discontinuous inverse. Let $(X, d_X) := (\mathbb{R}, d_{\mathbb{R}})$, where $d_{\mathbb{R}}$ is the 0/1-metric on \mathbb{R} . Let $(Y, d_Y) := (\mathbb{R}, \text{usual metric})$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the identity $x \mapsto x$. Then every subset of \mathbb{R} is open w.r.t. $d_{\mathbb{R}}$ -metric, so f is continuous. But $f^{-1}: (\mathbb{R}, \text{usual}) \rightarrow (\mathbb{R}, d_{\mathbb{R}})$, and $\{0\}$ is open in $d_{\mathbb{R}}$, but $f^{-1}(\{0\}) = \{0\}$ is not open in the usual metric of \mathbb{R} .

Examples. (a) Let $f: \mathbb{Q}^N \rightarrow [0, 1]$ by $f(x) = 0.x_1x_2\dots$ treated as decimal representation of reals. This is surjective but not injective because some rationals have two different decimal representations, like $0.47999\dots = 0.48000\dots$. This map f is continuous because $f^{-1}(I)$, where $I \subseteq [0, 1]$ is an intersection of an open interval with $\{0, 1\}$ (e.g. $I = [0, \frac{1}{2}]$, $(\frac{1}{3}, \frac{2}{3})$, $(\frac{1}{3}, 1]$) is open since if $x \in f^{-1}(I)$ then taking $n \in \mathbb{N}$ large enough, we get that $[x|_n] \in f^{-1}(I)$ because if $0.x_1x_2\dots x_{n-1}x_n\dots$ and $0.y_1y_2\dots y_{n-1}y_n\dots$ coincide up to the n^{th} digit then their distance is $\leq 10^{-n}$.

We can do the same with $\mathbb{Z}^N \rightarrow [0, 1]$ by taking binary representations instead.

(b) Thomae's function. Let $T: (0, 1) \rightarrow [0, \frac{1}{2}]$ be defined by

$$T(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{m} & \text{if } x \in \mathbb{Q} \text{ and } x = \frac{n}{m} \text{ is reduced.} \end{cases}$$

Claim. T is continuous at irrationals and discontinuous at rationals.

Proof. If $x = \frac{u}{m}$ is a rational and $\frac{u}{m}$ is reduced, then $T(x) = \frac{1}{m}$ and $V := (0, \frac{2}{m}) \ni \frac{1}{m}$ is open while $T^{-1}(V)$ only contains rationals, so it cannot contain an open interval $I \ni x$ because every nonempty open interval contains an irrational (HW).